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Abstract – The error values of CMMs depends on the probing 
direction; hence its spatial variation is a key part of the probe 
inaccuracy. This paper presents genetically-generated fuzzy 
knowledge bases (FKBs) to model the spatial error 
characteristics of a CMM module-changing probe. Two 
automatically generated FKBs based on two optimization 
paradigms are used for the reconstruction of the direction-
dependent probe error w. The angles β and γ are used as input 
variables of the FKBs; they describe the spatial direction of 
probe triggering. The learning algorithm used to generate the 
FKBs is a real/ binary like coded genetic algorithm developed by 
the authors. The influence of the optimization criteria on the 
precision of the genetically-generated FKBs is presented.  
 

I.  INTRODUCTION 

 This paper presents genetically-generated fuzzy 
knowledge bases (FKBs) to model the spatial error 
characteristics of a module-changing Coordinate measuring 
machine (CMM) trigger probe. CMMs are accurate 
instruments used to evaluate the dimensional values of 
complex geometry workpieces. The uncertainty of the CMM 
and accuracy of the inspection are linked. One of the most 
important sources of CMM errors is the sensor called “probe” 
used to collect coordinate points on measured objects [1]. 
Generally the average value of probe error is measured and 
compensated for automatically during the machine automatic 
calibration process, but since the error value depends on the 
probing direction, its spatial variation [2] is a key part of the 
probe inaccuracy. The automatically generated FKBs are used 
for the reconstruction of the direction-dependent probe error 
“w”. In the FKB, w represents the output variable while the 
angles β and γ are used as input variables; they describe the 
spatial direction of module-changing probe triggering (normal  
 

to the measured surface). The learning algorithm used to 
generate the FKBs is a real/ binary like coded genetic 
algorithm (RBCGA) developed by the authors [3]. The 
influence of optimization criteria on the precision of the 
genetically-generated FKBs, is investigated by using the RMS 
error alone and then a combination of the RMS error and 
absolute error as optimization target. Near-optimal FKBs 
representing the reconstruction of 3D probe error 
characteristics are obtained and presented.  
 

II. EXPERIMENTAL LEARNING DATA  

A compact, module-changing probe that uses strain-gauge 
mechanisms with higher accuracy is used. The TP200 probe 
uses micro strain gauge transducers and delivers excellent 
repeatability and accurate 3D form measurement even with 
long styli.  The TP 200 triggering probe is shown in Fig 1. 

 

 
Figure 1: TP 200 triggering probe [4] 

A. Experimental set-up 
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The experimental learning file contains data 
corresponding to precise measurements of probe error 
characteristics taken on a set-up [5] dedicated for probe 
testing. A new method applying a low force high resolution 
displacement transducer is proposed to measure a triggering 
probe pretravel “w” in XYZ space. The idea relies on 
detection of a contact of a stylus tip with an element that 
activates its operation (that means with a measured 
workpiece). The pretravel is measured according to the 
definition as the displacement of the stylus tip between the 
point of touch with a workpiece and the triggering moment. 
The spatial distribution of points recorded in the 
measurements obtained by probe triggering from different 
directions in XYZ space delivers information on the probe 
inaccuracy. The moment of contact of the probe tip with the 
element that initiates its movement is detected by means of a 
low force displacement transducer. The transducer tip contacts 
the probe tip before the measurement of pretravel length is 
realized. The thrust induced by the transducer must be at least 
ten times lower than the probe thrust in order to not activate 
the probe. The measurement starts from determination of the 
position of the transducer measuring arm in the neutral 
position being the moment when the displacement transducer 
tip touches the probe tip. When the probe is mechanically 
triggered by external force the transducer reading is recorded. 
The difference in readings is the measure of the pretravel. 
 
B. Investigation of pretravel of triggering probes in XYZ 
space  

The probes were tested in their standard configuration. 
Commonly used styluses were used. The stems were 40 mm 
long, 2 mm in diameter and were made of tungsten carbide 
with a 4 mm sapphire ball at the end. The measuring velocity 
of majority of coordinate measuring machines (being also the 
probe triggering velocity) can be adjusted from one to a few 
tenths millimetres per second. In our experiments we applied 
the value of 8 mm/s which is the most typical speed used for 
probe tests by Renishaw. 
Test runs comprising 5 measurements of the pretravel were 
done for each studied probe. The tip approaching direction in 
space was changed by 9° for every consecutive measurement. 
As a result 2000 measurement points were obtained for each 
probe. Fig. 2 shows the spatial distribution of the average 
pretravel plotted in polar coordinates for the double stage 
probe TP200. 
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Figure 2: Spatial distribution of the average pretravel 
 
The plane sections, marked with the bold lines on the 3D plot 
in the XY plane (Fig. 3 left) perpendicular to the probe axis 
and YZ plane (Fig. 3 right) parallel to the probe axis are 

shown too. β  and γ are angles defining direction of 

triggering force. β  is the angle of triggering force direction in 

the XY plane perpendicular to the probe axis. γ is the angle 
between triggering force direction and the XY plane. In these 
plots the data points are marked with crosses, the mean value 
of pretravel length for a given measuring direction was 
marked with full line and the data scattering ±2s was marked 
with the dashed line. The bold line means the pretravel value 
averaged for the whole characteristics. 
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Figure 3: 3D plot in the XY and YZ planes 
 

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
0

9 18
27

36
45

54

63

72

81

90

99

108

117

126

135
144

153
162171

180
189198

207
216

225

234

243

252

261

270

279

288

297

306

315
324

333
342 351

 
Figure 4: Experimental profile of error characteristics 
Fig. 4, shows a plot of the experimental data using axis β and 
γ. 

β γ 



III. GENETIC ALGORITHMS 

Genetic algorithms (GA) are powerful stochastic 
optimization techniques based on the analogy of the 
mechanics of biological genetics and imitate the Darwinian 
survival of the fittest approach [6]. Each individual of a 
population is a potential FDSS Fuzzy-FKB, where four basic 
operations of the developed GA learning software are 
performed; reproduction, mutation, evaluation and natural 
selection. The RBCGA developed by the authors is a 
combination of a real coded genetic algorithm and a binary 
coded genetic algorithm.  The reproduction mechanism is a 
mutli-crossover proposed by the authors [3], and the mutation 
is uniform as proposed in [7]. 

 
A. Performance Criterion of the RBCGA 

The performance criterion allows computation of the 
rating of each FKB used by the RBCGA to perform natural 
selection. In this paper, the performance criterion is the 
accuracy level of a FKB (approximation error) in reproducing 
the outputs of the learning data. The approximation error 
∆RMS is measured using the RMS error method: 

∑
=

−
=∆

N

i

outputoutput
MS N

dataRBCGA

1

2

R

)(
                               (1) 

where N represents the size of the learning data. The RMS 
fitness value φ is evaluated as a percentage of the output 
length of the conclusion L, i.e. 

100
L

L RMS ×−= ∆φ                                                               (2) 

IV. GENERATION OF THE FKBS 

The first step is to generate the FKB with a focus on the 
accuracy of the model, which means maximizingφ .  
 
A. Learning of FKBs by minimizing the RMS error 
  
The fuzzy learning proposed the FKB presented in Fig. 5. The 
genetically generated FKB reproduces the data with an RMS 
of 0.20µm, a maximum absolute error of 0.72µm and a 
minimum absolute error of 0.00 µm. The correlation between 
the experimental and the predicted error profile is 99.00%. 
These error and correlation values can be considered very 
satisfactory. As seen in Fig. 6, the profile of the errors is 
approximated into a circular shape, which is similar to the 
experimental data, however on the vertical axis there is a big 
jump of the values, which could be attributed to the relatively 
high absolute error. 
In the next section we will learn the FKBs but with a change 
in the optimization paradigm, we will add the absolute error as 
an optimization criterion ∆ABS. 
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Figure 5: Genetically-generated FKB 
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Figure 6: Genetic-Fuzzy error profile 

 
A. Learning of FKBs using two performance criteria 
The new fitness value of the RBCGA uses on a selection 
based on 50% RMS error and 50% ABS errors. The new 
fitness value φ’ is calculated as follow: 

100
L

)(L2
2
1' ABSRMS ×






 +−= ∆∆φ       (4) 

 
The obtained FKB, using the fitness value of eq.4, is presented 
in Fig. 7. 
Comparing Fig. 5 and Fig. 7, one can see that the distribution 
and the number of fuzzy sets on the premises and the 
conclusions are almost identical (In Fig. 5 on the second 
premise, fuzzy sets 5 and 6 are superimposed). However the 
fuzzy rules are different. Table 1 shows the set of rules 
between the two FKBs; for convenience number 5 is used 
instead of six for the FKB presented in Fig. 4 because of their 
superimposition. 

β γ 



 

 
Figure 7: Genetically-generated FKB 
 

TABLE I 
FUZZY RULE BASE FOR BOTH FKBS 

Input Premises Output FKB 1 Output FKB 2 
1 1 5 5 
2 1 4 5 
3 1 5 5 
4 1 4 5 
5 1 3 4 
1 2 3 4 
2 2 2 2 
3 2 2 2 
4 2 1 1 
5 2 1 1 

 
From Table 1, one can see that the new paradigm changed 

50% of the fuzzy rule base which confirms the important 
influence it has on the prediction accuracy of the error profile 
[8]. The new genetically generated FKB reproduces the data 
with an RMS of 0.21µm, a maximum absolute error of 
0.57µm and a minimum absolute error of 0.00 µm. The 
correlation between the experimental and the predicted error 
profile is still at 99.00%.  The new fuzzy rule base improved 
the results since the RMS remained very close to the one 
already obtained (21% instead of 20%) but the maximal 
absolute error was reduced by almost 30%. As one can notice 
from Fig. 8 the error profile is smoother than the one 
presented in Fig. 6 and less prone to big local jumps and/or 
deviations of the experimental calibration error profile (Fig. 
3). 

 
V. CONCLUSION 

A good balance between the optimization criteria helped 
improve the learning of the fuzzy knowledge bases. The 
number of fuzzy sets on premises γ and β (5 and 2) can be 
used as a number of set-ups when modeling CMM 3D 
triggering probe error characteristics for this type of probes.  

Using the FKBs can lead to a better understanding of the 
influence of the different direction of probing on the error by 
putting semantics to the fuzzy sets of the genetically generated 
FKBs. 
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Figure 8: Profile of the fuzzy predicted errors 
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